$Z \rightarrow \mu\mu$ using 2 fb⁻¹ data

Muon Momentum Scale Update

Arie Bodek, Y.S Chung, Jiyeon Han University of Rochester

Lepton Charge Asymmetry Meeting / Nov. 10th, 2011

Update of Momentum Scale Study

- Momentum scale bias is also important in Z analysis
- Reported the update of muon momentum scale study (2.1 fb⁻¹)
 - The correction factor = MuscleFit + Rochester's correction
 - Rochester's correction
 - $<1/p_T > correction in 4x4 (<math>\eta, \Phi$) : reference point is Gen. level
 - Apply the global factor for resolution and Z mass peak tuning
 - Tuned $p_i = p_i + Tx(Gp_i p_i)$ where p_i : 4-mom. of μ , Gp_i : 4-mom. of μ in Gen. level
 - Tuned $p_T = p_T/(1+\Delta x p_T)$: shift $1/p_T$ to match the mass peak
 - \bullet Φ_{CS} distribution still shows the discrepancy after all correction
 - \odot Need additional fine tuning to fix Φ_{CS} and Z peak region

Data set and selection

- Data set :
 - ② 2011A data set: integrated luminosity = 2.1 fb⁻¹
 - Dimuon trigger sample
 - Jason good run required
 - Standard VBTF muon selection required
 - \odot pT>20 GeV/c and $|\eta|<2.1$
 - °0.87 M events selected in 60 < M(μμ) < 120 GeV</p>
- MC set: Summer11 sample (30 M events generated)
 - DYToMuMu_M-20_CT10_TuneZ2_7TeV-powheg-pythia
 - Trigger and muon rec. ID efficiency is corrected
 - Efficiencies are estimated using Tag&Probe method

Reference plots after all corrections

 \odot Mass, Afb, ϕ_{CS} after all corrections

Mass shape in peak region is different b/w data and MC ⇒ Hard to match

Still MC doesn't agree with
the data for φ_{CS}
MC is flatter than data
⇒ Working on it

- Possible sources for φ_{cs} distribution
 - \bullet Z P_T distribution : ϕ_{CS} distribution Z P_T dependence
 - \odot Global factor (T, \triangle) has charge dependence

Reference Plot after Z PT Correction

@ Z PT correction is applied and check the reference plots

Z PT correction cannot fix ϕ_{CS} distribution ϕ_{CS} (MC) is flat in ϕ_{CS} < 10 \Rightarrow MuscleFit in MC makes ϕ_{CS} more flatter

Therefore, decide not to apply MuscleFit

Rochester's Correction + Z PT Correction

Rochester's correction + Z P_T correction (no MuscleFit applied)

Z peak in MC is slightly higher ϕ_{CS} (MC) has better matches $\Rightarrow \chi 2 = 185/49$ in $\phi_{CS} < 10$ Afb is not perfect around Z peak region

Additional smearing factor for μ^+ and μ^- , respectively \Rightarrow Smearing factor shows the negative correlation b/w μ^+ and μ^- (Reference plots are in next slide)

Additional Smearing Factor

Additional Smearing Factor: Tuned $p_T = p_T/(1+\Delta^{+/-}xp_TxG(0,1))$

- $\Delta^+ = 0.000105$
- $\Delta^{-} = -0.000165$
- Z peak in MC is slightly higher
- Afb is still not perfect
 - \Rightarrow It seems that <1/p_T> correction in 4x4 (η,Φ) matrix is not enough binning

Tested 8x8 binning for η and Φ

⇒ Better match in Afb

Not finalized study yet

Summary

- Muon momentum scale is tested using 2011A data (2.1 fb⁻¹)
 - MuscleFit gives bias in MC φ_{CS} distribution
 - \odot Z P_T tuning cannot fix ϕ_{CS} distribution
 - Remove MuscleFit and only use Rochester'correction
 - \emptyset <1/p_T> correction reduces η , φ , and charge dependence
 - @ Global factor is applied into MC for matching mass distribution
- Z mass distribution and Afb shows slight difference
 - Trying to apply finer binning of <1/p_T> correction
 - Found that the global factor has negative correlation for μ^+/μ^-
 - Will extract the global factor for μ^+/μ^- , respectively

Back-up Slides

Reference plot for study

- Three quantities are used as the references of the study
 - Mass distribution :
 - ø data and MC should agree in mass
 - Apply the correction into MC to match with data
 - Afb:
 - Afb around Z peak region is sensitive to the momentum resolution

Wiggle comes from momentum bias

- \odot ϕ in CS frame for $P_T(\mu\mu)$ < 10 GeV
 - \circ CS frame in low P_T region is closed to lab frame

Level of $\phi_{CS} = 0$ should be same to level of $\phi_{CS} = \pm \pi$ (only μ charge flip)

$M(\mu\mu)$, Afb, ϕ_{CS} in data vs. MC

- Reference plots before any momentum correction
 - MC is corrected for efficiencies
 - Background is not subtracted yet → background is very small

Data and MC has different level of momentum bias

MuscleFit in data

Mass, Afb, $φ_{CS}$ before and after MuscleFit
Mass vs. φ of $μ^-/μ^+$ Mass / Afb / $φ_{CS}$

- MuscleFit removed \(\phi \) dependence
- Not much change in Mass, Afb, and φ_{cs} distribution

MuscleFit in MC

Mass, Afb, ϕ_{CS} before(blue) and after(black) MuscleFit Mass vs. ϕ of μ^-/μ^+ Mass / Afb / ϕ_{CS}

- MuscleFit (2010 version) over-corrects MC for Spring11 MC
- @ Mass peak shifts by ~0.12% and wiggle of ϕ_{CS} gets flatter
- Not much change in Afb

Data vs. MC after MuscleFit

 \odot Mass, Afb, ϕ_{CS} comparison between data and MC after MuscleFit

- Mass has good agreement after MuscleFit
- Afb has still wiggles in data and MC
- Φ_{CS} distribution shows a discrepancy between data and MC

Momentum scale using <1/p_>

- Apply additional correction on top of MuscleFit
- Φ (φ, η, Q) dependent correction using <1/p_T>

 - Tweak <1/p

 Ty of data and MC to match <1/p

 Ty

 of gen. in MC

 in MC
 - The correction factor of <1/p
 The correction factor of <1/p>
 - © Correction factor = <1/p_T> of data or MC / <1/p_T> of gen.

Global factor for resolution and scale

- - Need to tweak MC to match to data for Z mass and width
 - Global factor for the resolution and Z mass peak tuning
 - Tuned $p_i = p_i + Tx(Gp_i p_i)$ where p_i : 4-mom. of μ , Gp_i : 4-mom. of μ in Gen. level
 - Tuned $p_T = p_T/(1+\Delta x p_T)$: shift $1/p_T$ to match the mass peak

